

Smart Urban Water Systems

- some preliminary thoughts

Zhiguo Yuan AM, FTSE, IWA Distinguished Fellow ARC Australian Laureate Fellow Director, Advanced Water Management Centre 27 Feb 2020

Knowledge-based fault

diagnosis in dynamic systems

Why do I feel passionate about it?

(Yuan, Z. PhD thesis, 1992) Beijing University of Aeronautics Ghent University & and Astronautics The University of Queensland 博士学位论文 My career to date My Bachelor (1985) 基于知识的动态系统 Urban water management 故障诊断方法研究 Sensors & instrumentation 格 渥 My PhD (1992) G.C. Vansteen kiste 副指导教师 张明崖 Automation (AI) 飞行器控制、翻导与仿真 学科专业 Smart urban water systems

> 北京航空航天大学研究生院 一九九二年九月

Smart Urban Water Systems

Smart water system vs. ICA

• Smart water system encompasses ICA

Water Research 155 (2019) 381-402

Water Research

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/watres

Review

Sweating the assets – The role of instrumentation, control and automation in urban water systems

Zhiguo Yuan ^{a, h, *}, Gustaf Olsson ^{b, h, **}, Rachel Cardell-Oliver ^{c, h}, Kim van Schagen ^d, Angela Marchi ^{e, h}, Ana Deletic ^{f, h}, Christian Urich ^{f, h}, Wolfgang Rauch ^{g, h}, Yanchen Liu ⁱ, Guangming Jiang ^{a, j}

- ^c School of Computer Science & Software Engineering, The University of Western Australia, WA, 6009, Australia
- ^d Royal HaskoningDHV, PO Box 1132, 3800 BC, Amersfoort, the Netherlands
- ^e School of Civil, Environmental and Mining Engineering, University of Adelaide, SA, 5005, Australia
- ^f Civil Engineering Department, Monash Water for Liveability, Monash University, VIC, 3800, Australia
- ^g Institute of Infrastructure Engineering, University Innsbruck, A-6020, Innsbruck, Austria
- ^h CRC for Water Sensitive Cities, PO Box 8000, VIC, 3800, Australia
- School of Environment, Tsinghua University, 100083, Beijing, China

^j School of Civil, Mining and Environmental Engineering, University of Wollongong, NSW, 2522, Australia

ICA: Instrumentation, control and automation

^a Advanced Water Management Centre, The University of Queensland, QLD, 4072, Australia

^b Industrial Automation, IEA, Lund University, Sweden

Smart water system vs. ICA

- Smart water system encompasses ICA but expanding towards
- higher levels of duties
 - More integrative
 - More supervisory
 - Decision support (operational, management and planning, behaviour change)
- higher level of intelligence
 - IoT sensors
 - Big data
 - Machine learning & artificial intelligence

ICA: Instrumentation, control and automation

Driving forces for smart urban water

Technology push

- Internet of Things
- Low-cost sensors and low-cost, yet powerful microchips
- Large data storage capabilities
- Fast computing e.g. iCloud computing
- Advanced data analytics
 - machine learning
 - artificial intelligence

Demand pull

- Population growth and continued urbanisation imposes more pressure to urban water systems
 - Climate change causes more variability
- Aging infrastructure
- Customer expectation
- Integrated urban water management is becoming more important

Where are the opportunities (non-exhaustive)

Example 1: water source optimization – the orange council case study

Several water sources

(natural catchments, groundwater, stormwater harvesting and Macquarie River)

Several constraints

(environmental flows, source withdrawal limits, water restrictions)

Several objectives

(minimisation of costs, spill, greenhouse gas emissions and maximisation of environmental flows)

Dr Lisa Blinco, Uni Adelaide

Example 2: water production based on demand prediction

Example 3: tackling non-revenue water

ш	Performance Indicators (Last month)					
Location	Estimated water loss	Volume per connect	Technical effici	ILI (August / Se	Total Consumptio	
LAGHL - Laguna HLZ	0.001	N/A	100.00 %	N/A / N/A	0.90 / 0.00 MI	^
EOH9P - Mango Hill East	233,910.73 I	N/A	100.00 %	N/A / N/A	7.18 / 3.70 MI	
DMA04R - Margate Zone	1.03 MI	495.761	94.80 %	0.46 / 0.69	0.74 / 0.00 MI	
DMA56P - Ferny Hills South	155,029.50	474.751	95.19 %	0.96 / 0.62	0.00 / 0.00 MI	
CASWY - Castaways Beach	151,202.671	716.361	100.00 %	0.00 / 0.00	0.04 / 0.00 MI	
DMA01P - BRENDALE Strathpine East	3.32 MI	1,719.83 I	79.75 %	7.01 / 5.67	4.76 / 0.70 MI	~ <
CABN - Caboolture North	2.31 MI	521.501	85.54 %	0.86 / 0.82	10.41 / 0.00 MI	
DMA38P - Dayboro LL	0.00 I	N/A	100.00 %	N/A / N/A	0.00 / 0.00 MI	l
LAN03 - Diddillibah	0.00 I	N/A	100.00 %	N/A / N/A	0.00 / 0.00 MI	1
DMA31P - Warner Central	0.00 I	N/A	N/A	N/A / N/A	0.94 / 0.00 MI	
DMA59P - Highvale South	693,370.63 I	N/A	100.00 %	N/A / N/A	3.66 / 1.22 MI	
	4				•	-
	Total: 194, Displayed: 180					

Example from Unitywater (QLD) potable water distribution network using TaKaDu platform (Israel):

- Real-time flow data versus Network-based prediction flow model = leak detection shortly after burst & detection of hidden (underground) leaks
- \$16 million AUD per annum in savings from early detection of leaks
- 6.5 billion litres of non-revenue water loss prevented in 2017 due to enabling of rapid, fit-for-purpose and localised response

Example 4: water consumption pattern analysis – changing customer behavior

14,000 smart meters installed

Prof Rachel Cardell-Oliver, UWA

© CRC for Water Sensitive Cities Presentation Title | Date

Example 5: online optimization of pump operations

Example 5: online optimization of pump operations

- Hybrid system linear model predictive control algorithm not directly applicable
- Large search spaces efficient optimization algorithms required

Machine learning

- Block-box (data driven)
 - Statistical modelling
 - Artificial neural network
 - Large amount of data
 - Identifiability issue

ARMAX model:

$$A\left(z^{-1}\right)y\left(t\right) = B\left(z^{-1}\right)u\left(t\right) + C\left(z^{-1}\right)e\left(t\right)$$

Machine learning

- Block-box (data driven) •
 - Statistical modelling —
 - Artificial neural network
 - Large amount of data
 - Identifiability issue _____

ARMAX model:

$$\hat{y}(t) = 0.2140 \hat{y}(t-1) + 0.1822 \hat{y}(t-2) + 0.1018 \hat{y}(t-3) + 0.1634 \hat{y}(t-4) + 0.1014 \hat{y}(t-5) + 0.0869 \hat{y}(t-6) + 0.0543 \hat{y}(t-7) + 1.5261u(t-1) + 0.7946u(t-2) - 0.0285u(t-3) + 0.2921u(t-4) + e(t)$$

Q(in)

PUMP

Li et al. (2019)

Machine learning Rainfall **Real-time multistep prediction** Regression process Prediction process Flow y(t) $\hat{y}(t+k|t)$ ARMAX Flow pH_in pH_out t+2 t+3 Time t-1 t+1 100 8.0 Predicted Future flow Mg(OH)2 HRT **On-line control** Inflow **Dosing rate** pH_out pH_in Cracked pipe Sulfide Infiltration monitor **WWTP** Deteriorated **Rising main** manhole Discharge point Pump Wet well

Machine learning

- Block-box (data driven)
 - Statistical modelling
 - Artificial neural network
 - Large amount of data
 - Identifiability issue
- Grey-box
 - Data supplement existing knowledge
 - Model-supported data analysis or dataenabled model identification
 - Process knowledge required
 - Smaller amount of data needed

Prior knowledge is important

We should not ask the machine to invent the Bernoulli equation!

$$egin{aligned} rac{\partial(
ho\eta)}{\partial t}+rac{\partial(
ho\eta u)}{\partial x}+rac{\partial(
ho\eta v)}{\partial y}&=0,\ \ rac{\partial(
ho\eta u)}{\partial t}+rac{\partial}{\partial x}\left(
ho\eta u^2+rac{1}{2}
ho g\eta^2
ight)+rac{\partial(
ho\eta uv)}{\partial y}&=0,\ \ rac{\partial(
ho\eta v)}{\partial t}+rac{\partial(
ho\eta uv)}{\partial x}+rac{\partial}{\partial y}\left(
ho\eta v^2+rac{1}{2}
ho g\eta^2
ight)&=0. \end{aligned}$$

Machine learning

- Block-box (data driven)
 - Statistical modelling
 - Artificial neural network
 - Large amount of data
 - Identifiability issue
- Grey-box
 - Data supplement existing knowledge
 - Model-supported data analysis or dataenabled model identification
 - Process knowledge required
 - Smaller amount of data needed

D: diameter s: slope Q: flow rate T: temperature

$$k_{CH4,T} = a_1 T^{b_1} + a_2 Q^{b_2} + a_3 D^{b_3} + a_4 s^{b_4}$$

$$k_{CH4,T} = k(T)Q^{\alpha}D^{\beta}s^{\gamma}$$

Segmented efforts need to be united

Concluding remarks

- Urban water system will get smarter!!
- While isolated case studies have been done, there is a lack of a systematic framework
- Collaborative efforts from utilities, hardware suppliers, software suppliers, and researchers needed
- Multi-disciplinary research is required

Acknowledgements

