How mathematical modelling can be useful to better define performance and restoration options for gullies

Queensland, Australia

drew Watson lonelyplanet.com

Australian Rivers Institute

Melanie Roberts – Queensland Water Modelling Network Senior Research Fellow

QWMN Forum 2020 26 – 27 February 2020

🕽 @MelanieEmmajade 😏 @GriffithARI 😏 @qldwmn

Gullies

- Responsible for 40 50% of sediment reaching the GBR
- Contribute to both sediment and nutrient levels in lagoon
- Form as a result of disturbed land
 - runoff driven
- Opportunity for targetted intervention

Gully rehabilitation

Direct

- porous check dams
- revegetation
- rock capping
- compact & fill
- water diversion

Indirect

- reduce stocking rates
- intensive stocking rotation
- stock exclusion
- sediment traps

The pipeline

Why model gullies?

- Support quantification of impacts
- Identify areas to rehabilitate
- Compare options for rehabilitation
- Understand effectiveness of action
- Understand processes in a connected landscape
- Support trading or credit systems
- Inform monitoring programs

MERGE

- 1D process based model to inform interventions at the local scale
- Conservation of mass sediment exiting the gully
- Entrainment and deposition
 - growth depositional layer
- Analytical steady-state solutions

How MERGE can inform decisions

- Sediment exiting gully under different scenarios
- Test interventions ground cover, porous check dams
- Simple analytical expressions feed into optimisation schemes
- Couple with nutrient behaviour value of wetlands, impact of dams
- Criteria for gully growth

Next steps

- Validation
- Parameterisation
 - soil erosivity
 - interventions
- Sediment-nutrient interactions
 - aggregate distributions

Documentation

Modelling considerations

- What does the model represent?
 - processes?
 - temporal and special scale?
- What does the model output?
- What inputs does it require?
- What is the model intended for?

Idealised linear gully

Deposition

Settling velocity – Stokes Law

$$w_s = \frac{2(\sigma - \rho)}{9\mu} R^2 g$$

Deposition rate

$$\delta = bWCw_s$$

 w_s - settling velocity R - sediment radius W - width gully b - sediment conc. ratio

- $\begin{aligned} \sigma &- \text{ density sediment} & \rho \\ \mu &- \text{ dynamic viscosity} & g \\ \delta &- \text{ rate deposition} & C \end{aligned}$
- ρ density fluid g - gravity C - sediment concentration

Power to entrain sediment

 $\eta \left[J + F + \left(\frac{\sigma - \rho}{\sigma} \right) gh \right]$

- \boldsymbol{J} erosivity
- ${\cal F}$ static friction
- σ density sediment
- ρ density fluid
- \boldsymbol{h} entrainment height
- η rate of entrainment

Waterfall power available

Australian Rivers Institute

 Ψ - waterfall power ρ - density fluid g - gravity Q - flux D - gully depth L_w - length waterfall region S - slope

 $\mathbf{N} PE$

 Δt

= mgh

Stream power available

ρ - density fluid g - gravity Q/W - flux per unit width d - flow depth

 Ω - stream power S - slope

Rates of entrainment - head and wal

$$\eta_{eh} = \left[\frac{k(\Omega + \Psi)}{J + F + \beta} - \delta \frac{F + \beta}{J + F + \beta}\right] \left(\frac{C^* - C}{C^*}\right)$$
$$\eta_{ew} = \frac{2d}{W + 2d} \frac{k\Omega}{J + F + \beta} \frac{C^* - C}{C^*}$$
$$\eta_r = \min\left(\frac{W}{W + 2d} \frac{k\Omega}{F + \beta} \frac{C^* - C}{C^*}, \mathcal{M}\right)$$
$$\eta_{ef} = \begin{cases} 0 & \eta_r \leq \mathcal{M} \\ \frac{W}{W + 2d} \frac{k\Omega}{J + F + \beta} \frac{C^* - C}{C^*} - \eta_r \frac{F + \beta}{J + F + \beta} & \eta_r > \mathcal{M}. \end{cases}$$

