

Remote sensing and water modelling

A 5 year outlook

Tim Malthus | CSIRO Oceans and Atmosphere | 2020-02-27

Australia's National Science Agency

Structure

- Perspectives
- Trends in remote sensing
- Remote sensing and modelling relationship
- Issues and opportunities
- Conclusion

My pipeline - observations **and** models critical to the success of decision making

Remote sensing and modelling

Remote Sensing	Models
Higher spatial and temporal coverage than in situ measurements	High spatial and temporal resolution
40+ year time series (hindcasting)	Tool for forecasting, scenario assessment
Surface view only	3D structure
Cloud interference	Cloud free, continuous
Large uncertainties	Uncertainties?
Satellite drifts, calibration for time series	Process understanding
Regional and temporal biases	

National perspectives

Earth Observation Australia

Digital Earth AUSTRALIA

Space Future Science Platform

Australian Earth Observation Community Plan 2026

Delivering essential information and services for Australia's future.

Trend - Pervasiveness

- Constellations
- Commercialisation

A sky full of (commercial) eyes – Up to 1,300 Earth observation satellites in next 5 years

BY DOUG MOHNEY JULY 24, 2018

! LEAVE A COMMENT

Trend – Data continuity

Data supply guaranteed until 2030s

Supported by Landsat: Landsat 9 – Dec 2020 Landsat 10 – in planning

Trend – Diversity

- Platforms:
 - UAVs
 - Planes, balloons
 - Cube and micro-sats
 - Satellites
- Sensors:
 - Hyperspectral
 - Lidar
 - Radar
 - Geostationery

Trend - Hyperspectral satellites

Prisma (2019)

EnMap (2020)

Hyperspectral Exposed Payload ISS(Internationa Space Station JEM(Japanese HISUI (2019)

High spectral resolution promises improved parameters and reduced uncertainties

Lidar

GEDI – Forest Canopy Profile and Waveforms

Terrestrial Laser scanning - Mangroves

Lidar offers 3D structure, fine scale

Radar

NovaSAR (2018)

SAR offers weather independence, structure, water delineation

Geostationery

Himawari-8 (2014)

Geostationery offers high temporal resolution, dynamic processes

Challenge – Data volumes

Trend – Discoverability & processing

- Analysis Ready Data
- Data cubes / Hubs (the pixel is key)
- Open data / Open source
- Off-the-shelf products
- Lowering the barrier to entry
- Operational services
- Processing in the cloud

Google Earth Engine

Digital Earth AUSTRALIA

Algal bloom detection and visualisation

Workflow

Processing

Visualization

Malthus et al. (2019) Remote Sensing, 11:2954

Issues and opportunities

- Access is mixed
- Continuity of the time series and products
- Duplication of effort
- Continuing calibration and validation
- From single-sensor products to the development of temporal merging, multi-sensor products, data assimilation
- Hierarchical approaches Small scale high resolution to wider scale low resolution
- Automated recognition structures, habitats, species

Data fusion, virtual datasets

- Exploits high temporal, spatial and spectral resolution
- No single sensor achieves it, but we have sensors that satisfy each requirement
- Can we combine these to satisfy what we need?
 - Spectral-temporal / Spatial-temporal fusion
 - ML / AI

Remote sensing and modelling

- Greater synergy between RS and models
- RS informs model validation, model skill assessment
- Modelling informs RS, e.g. algorithm improvement
- Challenges:
 - Mis-match between model outputs and ocean colour products
 - Each provides a different "measurement" inhibiting straightforward intercomparisons
 - Differences in terminology/similarly names variables, uncertainties, new developments in modelling directly link to RS (example)

eReefs – Validation using true colour

True colour from orbiting satellite (MODIS)

True colour as a model output

- Data assimilation system constrained using the mismatch between observed and simulated remote-sensing reflectance.
- Reanalysis (1 June 2013 30 October 2016) completed on 24 Feb 2017, 4 days ahead of schedule.

Biogeosciences, 13, 1-30, 2016	
www.biogeosciences.net/13/1/2016/	
doi:10.5194/bg-13-1-2016	
© Author(s) 2016. CC Attribution 3.0 License.	

Emlyn M. Jones¹, Mark E. Baird¹, Mathieu Mongin¹, John Parslow¹, Jenny Skerratt¹, Jenny Lovell¹, Nugzar Margyelashvili¹, Richard J. Matear¹, Karen Wild-Allen¹, Barbara Robson², Farhan Rizwi¹, Peter Oke¹, Edward King¹, Thomas Schroeder³, Andy Steven³, and John Taylor⁴

Conclusions

- A RS data explosion, more accessible, higher resolution, diversity
- Modellers need to be better informed of RS use and developments
- Greater dialogue needed between the two communities how to interpret the comparisons
- Data assimilation needs work formal mechanisms to synthesize observations and models
- Uncertainty in RS products requires greater understanding
- Both RS and modelling depend on in situ data

Thank you

Oceans and Atmosphere

Tim Malthus Research Group Leader

+61 3 3833 5583 tim.malthus@csiro.au

Australia's National Science Agency

Driven by colour - information in spectral reflectance

Alert level	Chlorophyll level
Green	<20 ug Chl I ⁻¹
Amber	>20-50 ug Chl l ⁻
Red	>50 ug Chl I ⁻¹

NHMRC/WHO – Guidelines for recreational use

IoT-Sat

In-Situ Sensor Pack

COCC DNRME CSIRO Monting - 2 December 2019

IoT-Sat

AquaSAT-2

IoT-Sat

AquaWatch

Facility

Data Integration

IoT-Sat

IoT-Sat

Australia (& Global) water monitoring system

AquaSAT-1

- Ground sensor networks + IoT
- New EO satellites
- Data integration

Spatial resolution

ETa (mm/day) 0.5 == 1.0 == 1.5 == 2.0 == 2.5 == 3.0 == Rainforest

Waterhole persistence and quality

